
Mode-resolved phonon transmittance using lattice
dynamics: Robust algorithm and statistical
characteristics

Cite as: J. Appl. Phys. 134, 155302 (2023); doi: 10.1063/5.0171201

View Online Export Citation CrossMark
Submitted: 7 August 2023 · Accepted: 27 September 2023 ·
Published Online: 17 October 2023

Hong-Ao Yang and Bing-Yang Caoa)

AFFILIATIONS

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics,

Tsinghua University, Beijing 100084, China

a)Author to whom correspondence should be addressed: caoby@tsinghua.edu.cn. Tel/Fax: +86-10-6279-4531.

ABSTRACT

Lattice dynamics (LD) enables the calculation of mode-resolved transmittance of phonons passing through an interface, which is essential
for understanding and controlling the thermal boundary conductance (TBC). However, the original LD method may yield unphysical trans-
mittance over 100% due to the absence of the constraint of energy conservation. Here, we present a robust LD algorithm that utilizes linear
algebra transformations and projection gradient descent iterations to ensure energy conservation. Our approach demonstrates consistency
with the original LD method on the atomically smooth Si/Ge interface and exhibits robustness on rough Si/Ge interfaces. The evanescent
modes and localized effects at the interface are revealed. In addition, bottom-up analysis of the phonon transmittance shows that the anisot-
ropy in the azimuth angle can be ignored, while the dependency on the frequency and polar angle can be decoupled. The decoupled expres-
sion reproduces the TBC precisely. This work provides comprehensive insights into the mode-resolved phonon transmittance across
interfaces and paves the way for further research into the mechanism of TBC and its relation to atomic structures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0171201

I. INTRODUCTION

Thermal boundary conductance (TBC) is crucial for the
thermal management of microelectronics,1,2 nanocomposites,3

thermal electronics,4 and optoelectronics.5 As manufacturing pro-
cesses continue to evolve toward miniaturization, the density of
interfaces within devices is experiencing a rapid surge. The TBC
has become dominant in total thermal resistance. The TBC at solid
interfaces, which is affected by many factors, such as roughness,6–8

bonding strength,9 and defects,10 has attracted immense interest.
Phonons govern the TBC in semiconductors since they are the
primary heat carriers. A comprehensive description of the behavior
of phonons at interfaces has long been a common pursuit.

The Landauer formula offers an intuitive explanation of the
TBC by summing over the contribution from each phonon mode,11

G ¼ 1
V

X
q,ν

�hωqνvqν,zT qν
@f
@T

, (1)

in which V is the volume of the primitive cell, q is the phonon wave

vector, ν is the phonon band index, ωqν is the angular frequency of
phonon qν, vqν,z is the z component of the group velocity of phonon
qν, T qν is the transmittance of phonon qν, f is the Bose–Einstein dis-
tribution function, and T is the temperature. Among them, other
quantities are easily obtainable, while the mode-resolved transmittance
is challenging to determine. An easier but less accurate method is to
approximate T as a function of ω, i.e., T � T (ω), known as the spec-
tral transmittance. In the last century, two continuum models were
developed to determine the spectral transmittance. One is the acoustic
mismatch model (AMM), assuming specular reflection and transmis-
sion.12 The other is the diffuse mismatch model (DMM), assuming
the opposite extreme, where all phonons experience diffusive scatter-
ing.13 Subsequently, several modifications were made to the DMM.
The exact phonon dispersion was adopted to replace the Debye
model.14,15 The effects of disorder were included by introducing a
virtual crystal of finite thickness at the interface.16 The inelastic scat-
tering was also incorporated into the DMM.17 The frequency-resolved
phonon transmittance has been verified by experiments.18,19 However,
the convention of the spectral transmittance remains unchanged.
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Several numerical approaches have been developed to compute
the spectral transmittance. The atomistic Green’s function (AGF)
method uses the second-order force constants at the interface as
input and computes the TBC in the reciprocal space and frequency
domain.20,21 The traditional AGF was formulated in the harmonic
regime, while anharmonic terms were incorporated recently.22,23 On
the other hand, molecular dynamics (MD) inherently involves full-
order anharmonic terms. Spectral TBC can be extracted from the
Fourier transform of atomistic heat flux across the interface in non-
equilibrium molecular dynamics (NEMD).24–27. Based on the
fluctuation-dissipation theory, spectral TBC can be computed in
equilibrium molecular dynamics (EMD) using the Green–Kubo
formula.28,29 The main disadvantage of MD simulation is that it
cannot account for quantum effects, thus being inaccurate at low
temperatures and low phonon occupancy. In addition, MD is con-
strained by size effects.30 Both AGF and MD are limited to calculat-
ing frequency-dependent TBC. Recently, AGF was extended to
compute the transmittance of a single phonon mode by solving the
eigensystem of the interfacial Hamiltonian matrix.31–35 This method
first constructs the Bloch matrix and then obtains discrete wave
vectors by diagonalizing the matrix and calculating the phase of the
eigenvalues with unit norms. The phonons cannot be sampled uni-
formly since the wave vectors are determined post hoc. Therefore,
the single-mode AGF is not conducive to practical applications. The
investigation of mode-resolved phonon transmittance remains insuf-
ficient in the current state of research.

The lattice dynamics (LD) is a useful approach for calculating
mode-resolved phonon transmittance, also known as the scattering
boundary method (SBM).11 While not a recent development, it has
yet to reach its full potential. LD is considered a mathematical
equivalent to AGF33 since it uses the same input as the AGF
method. However, LD shows superiority in single-mode calcula-
tions by incorporating phase information on the boundaries,
whereas AGF only utilizes density information. The prototype of
LD was proposed in 1978 when Lumpkin et al. computed the TBC
of a one-dimensional atomic chain analytically.36 Later, this
method was implemented on a 3D face-centered cubic lattice37 and
a Si/Ge interface with a diamond structure.38 Soon after, the solu-
tion transitioned from analytical to numerical. Wang et al. com-
puted the phonon transmittance of acoustic branches in a
nanotube junction,39 in which the equations of motion were assem-
bled into an overdetermined linear system of equations. The linear
system was approximately solved using the singular value decom-
position (SVD) method. Subsequently, the LD method was applied
to atomic junctions40 and superlattice junctions,41 while the algo-
rithm itself has not advanced further. However, the current LD
method lacks the constraint of energy conservation, thus producing
non-physical results. As can be seen in the literature, the transmit-
tance and reflectance do not sum up to unity.42 Although other
studies did not mention reflectance explicitly,39,41 the energy con-
servation issue still lurks in the background. This issue arises from
the numerical error when solving the overdetermined equations
approximately.43 The problem becomes even more pronounced
when dealing with non-atomically smooth interfaces as additional
interfacial atoms and phonon modes need to be taken into consid-
eration. Hence, there is currently no research applying LD methods
to rough interfaces. The absence of the constraint on energy

conservation becomes a major obstacle in applying the LD
approach to realistic interfaces.

In this work, we address the issue of constraint missing in the
original LD method. We begin by using linear algebra transforma-
tions to reduce the number of variables and then apply energy con-
servation constraints, utilizing the projection gradient descent
method for iterative solutions. The modified method is tested on an
atomically smooth interface and two types of rough interfaces
taking into account the contributions of diffusive scattering modes
and demonstrates excellent robustness. Furthermore, the localized
effects induced by the interface are accurately captured. The exis-
tence of evanescent modes is revealed. Finally, the statistical charac-
teristics of transmittance are analyzed using a bottom-up approach.
It is found that the anisotropy in the azimuth angle can be ignored,
while the dependency on the frequency and polar angle can be
decoupled. The decoupled expression reproduces the TBC precisely.

II. METHODOLOGY

A. Robust lattice dynamics approach

We begin by providing a clear definition of the system under
investigation. The system we discuss involves two periodic crystals
in contact at an interface. On either side of the interface, the crystal
exhibits periodicity that extends infinitely. In the vicinity of the
interface, the arrangement of atoms is arbitrary, allowing for
various types of rough interfaces. The entire system is divided into
three sections: the left lead (L), the device (D), and the right lead
(R). The left and right leads are half-infinite. The thickness of the
device should be sufficiently large to cover all the localized effects.
Specific requirements regarding the thickness of the device will be
addressed in a subsequent discussion. We assume the harmonic
interatomic interaction so that only harmonic phonon scattering is
allowed, i.e., the scattered phonons have the same frequency as the
incident phonon.

The system is governed by Newton’s equations of motion.
Under the assumption of harmonic interatomic interaction,
Newton’s equation of motion of atom i is written as

P
j

fijuj ¼ mi
d2ui

dt2
, (2)

where fij is the second-order force constant between atom i and j,
ui is the displacement of atom i, and mi is the mass of atom i. In
bulk crystals, the harmonic approximation directly leads to the
eigensystem of phonons,

Hqsqν ¼ ω2
qνsqν , (3)

where q is the phonon wave vector, ν is the phonon band index,
Hq is the Hamiltonian at q, sqν is the phonon eigenvector, and ωqν

is the phonon frequency. The left lead and the right lead can be
treated as ideal crystals in regions far away from the interface.
Consequently, the motion of the atoms in both leads can be
described by phonons in bulk crystals.

The next step is to determine the transmittance of a particular
phonon mode, denoted as I. We assume that the incident phonon
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originates from the left lead, and the derivation applies in the
opposite direction. A portion of the energy carried by the incident
phonon is reflected back to the left lead, while the remaining
energy is transmitted to the right lead. Phonon modes involved in
reflection and transmission dissipate into bulk phonon modes on
both sides, as only these modes are allowed in the crystals. Any
atomic vibration can be decomposed into a combination of multi-
ple bulk phonon modes. We denote reflection modes as Rj and
transmission modes as Tk. Due to the harmonic interatomic inter-
action, Rj and Tk have the same frequency as the incident mode.
Due to the translational symmetry in the parallel interface direc-
tion, Rj and Tk have the same horizontal component of crystal
momentum as the incident phonon mode. The identification of
these allowed modes will be detailed in Sec. II B. Based on the
aforementioned discussion, the atomic motion on the left lead can
be represented as the superposition of I and Rj, while the atomic
motion on the right side can be represented as the superposition of
Tk. No assumptions are made about the atomic motion in the
device. They are variables to be determined. In such a scenario, the
displacements of atoms are

ui ¼ sI eiqI �ri þP
Rj

ARj sRj e
iqRj

�ri , i [ L,

ui is to be solved, i [ D,

ui ¼
P
Tk

ATk sTk e
iqTk

�ri , i [ R,

(4)

in which ARj is the amplitude of the reflection mode Rj and ATk is
the amplitude of the transmission mode Tk. We assume the ampli-
tude of the incident mode is 1 for simplicity. The phase factor eiωt

in Eq. (4) is omitted since I, Rj, and Tk have the same frequency.
The transmittance T is defined as the energy flux density ratio
between the transmission modes and the incident mode. The
reflectance R is defined similarly. That is,

T ¼P
Tk

vTk ,z

vI,z
jATk j2,

R ¼P
Rj

�vRj ,z

vI,z
jARj j2,

(5)

where v is the group velocity. The law of conservation of energy
requires that

T þ R ¼ 1: (6)

Although the constraint of energy conservation is not explic-
itly stated in Eq. (4), it is an inherent requirement in the physical
context.

Thus far, we have elucidated the physical characteristics of the
system. Now, let us distill the mathematical equations governing
the system. Note that any linear combination of phonon eigenvec-
tors in the bulk satisfies Newton’s equation of motion. Hence, the
left lead and right lead components in Eq. (4) automatically satisfy
Eq. (2). Therefore, there remain the displacements of atoms in the
device, the amplitudes of the reflection modes, and the amplitudes
of the transmission modes to be solved. They are divided into two

categories, defined as

x1 ¼ {ui, i [ D},
x2 ¼ {AR1 , . . . , ARjmax , AT1 , . . . , ATkmax }:

(7)

By substituting Eq. (4) into Eq. (2), we can obtain a system of
linear equations in terms of x1 and x2,

A1x1 þ A2x2 ¼ b, (8)

where A1, A2, and b are coefficient matrices. The number of equa-
tions exceeds the number of variables, making the set of equations
overdetermined. This occurs because the evanescent modes are not
considered.43 Nevertheless, assuming all evanescent modes decay to
zero within the device, the overdetermined set of equations is still
consistent. This kind of problem is known as linear least squares.
The solution can be obtained by minimizing the residual,

r ¼ jb � A1x1 � A2x2j: (9)

Next, we will present the methodology for solving this mathe-
matical equation. The original LD method did not take into
account the energy conservation constraint during the solving
process, whereas our approach incorporates the energy conserva-
tion constraint. In the original LD method, the residual is mini-
mized by finding the linear least square solution of the following
equation using the singular value decomposition (SVD) method:

A1 0
0 A2

� �
x1

x2

� �
¼ b, (10a)

A1 0
0 A2

� �
¼ USV*, (10b)

x1

x2

� �
¼ VS�1U *b: (10c)

It can be seen that x1 and x2 are solved simultaneously. The
numerical error of x2 is significantly large for two reasons. First, no
constraint of energy conservation is applied to x2. Second, the
dimension of x1 is three times the number of atoms in the device,
which is much larger than x2. As a result, numerical errors can
lead to a large variation in the amplitudes of reflection and trans-
mission modes, further resulting in energy non-conservation and
inaccurate calculation of transmittance. The specific consequences
arising from errors will be elucidated in Sec. III.

In our robust algorithm, Eq. (9) is minimized with the con-
straint in Eq. (6). Since the constraint only applies to x2, we opti-
mize x1 and x2 sequentially to minimize r,

rmin ¼ min
x2

min
x1

j(b � A2x2) � A1x1j: (11)

The variable x1 can be eliminated by the following steps. First,
perform a QR decomposition on A1,

A1 ¼ QR, (12)
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in which Q is the orthogonal and R is the upper triangular. Then,
the optimized x1 is given by

x1 ¼ R�1Q*(b � A2x2), (13)

in which the star sign stands for conjugate transpose. The minimal
r is

rmin ¼ min
x2

min
x1

j(b � A2x2) � A1x1j
¼ min

x2

j(b � A2x2) � QRR�1Q*(b � A2x2)j
¼ min

x2

j(I � QQ*)b � (I � QQ*)A2x2j
¼ min

x2

jbeff � Aeff x2j, (14)

where beff ¼ (I � QQ*)b and Aeff ¼ (I � QQ*)A2. To this point,
rmin depends only on x2 and can be considered as another linear
least square problem. This least square problem has reduced its
dimensionality by several orders of magnitude compared to the
previous least squares problem. However, this problem cannot be
solved using the SVD or QR method because of the existence of
the constraint of energy conservation. Other all-purpose minimiza-
tion techniques, such as constrained conjugate gradients, also
perform poorly due to the large dimension of the problem.

We utilize the projected gradient descent (PGD) for con-
strained optimization. PGD is the most common and efficient
method for iteratively solving constrained linear least squares.44

Upon revisiting the constraint Eq. (6), we can observe that it is an
elliptical equation, which can be transformed into a unit-norm
equation (a circle) by linearly scaling the variables. Therefore, we
will refer to the constraint as kx2k2 ¼ 1 for simplicity. The PGD
algorithm operates as follows:

x(kþ1)
2 ¼ x(k)

2 � ηAT
eff

�
Aeff x

(k)
2 � beff

�
,

x(kþ1)
2 ¼ x(kþ1)

2 /kx(kþ1)
2 k2,

(15)

in which η is the step width. To achieve linear convergence,45 η is
chosen as

η ¼ 1/(kAeffk2kbeffk2): (16)

We start the iteration from a random x(0)
2 and stop until the

difference in residual of adjacent iterations is smaller than
1 � 10�9. The speed of convergence and the ability to find global
minima will be discussed later. Once the convergence is achieved,
the transmittance can be obtained from Eq. (5). Subsequently, the
TBC can be calculated using the Landauer formula Eq. (1). A
uniform sampling of phonon wave vectors in the first Brillouin
zone on a 20 � 20 � 20 mesh grid is employed, which is sufficient
for the system under investigation.

It is worth noting that the size effect in the LD method is
entirely different from that in the NEMD method. In NEMD, the
size effect arises from boundary scattering caused by the simulation
box,46 which is inevitable in molecular dynamics simulations.
Consequently, the characteristic length of the simulation box must

exceed the phonon mean free path (MFP). Conversely, the LD
method does not involve boundary scattering. Instead, sufficient
device thickness is still required to eliminate the exponentially
decaying evanescent mode, which is significantly shorter than the
phonon MFP. The evanescent mode is an inherent characteristic
caused by the presence of interfaces, and it cannot be avoided in
any method. A more detailed discussion on evanescent modes will
be provided in Sec. III.

B. Determination of diffusive scattering modes

In previous research using the original LD method, it was
always assumed that phonons undergo specular scattering. When
dealing with atomically smooth interfaces, considering only specu-
lar scattering is reasonable. However, in the case of rough inter-
faces, it becomes necessary to account for diffusive scattering as
well. Due to the inherent roughness of realistic interfaces, the origi-
nal LD method is not applicable in the real world.

Under the assumption of specular scattering, the reflection
and transmission phonon modes have the same horizontal compo-
nent of crystal momentum as the incident phonon mode. If we
assume that the interface is situated on the xy plane, the specular
scattering hypothesis states that

qT ,xy ¼ qR,xy ¼ qI,xy: (17)

The z component of the phonon wave vector is solved by the
elastic scattering assumption,

ω(qT , νT) ¼ ω(qR, νR) ¼ ω(qI , νI): (18)

To account for the diffusive scattering, we replicate the unit
cell horizontally to construct a supercell and then perturb the posi-
tions of atoms near the interface to introduce roughness. The
system exhibits periodicity in the horizontal direction with respect
to the lattice vectors of the supercell. Any horizontal wave vectors
that differ by a multiple of the horizontal reciprocal lattice vectors
of the supercell are permitted, that is,

qT ,xy ¼ qI,xy þ c1G1 þ c2G2,
qR,xy ¼ qI,xy þ c3G1 þ c4G2,

(19)

where c1,2,3,4 are integers and G1,2 are horizontal reciprocal lattice
constants of the supercell. Then, the z component of the wave
vector is determined according to Eq. (18) while ensuring that the
wave vector lies within the first Brillouin zone to avoid duplicate
counting. A similar strategy has been adopted in the literature,33,47

but it has not been implemented in the lattice dynamics.

C. Simulation details

The Si/Ge interface along the [001] interface is chosen for the
case study. This particular type of interface has been extensively
studied in the literature using the MD,11,48 AGF,49 and LD
methods.38 Researchers have also placed particular focus on the dif-
fusive scattering at rough interfaces33 and the mode-resolved trans-
mission properties at special points on ideal interfaces.22 However,
there are currently no reports on the mode-resolved phonon
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transmittance at the rough Si/Ge interface using the LD method.
Our work will serve to contrast and complement existing literature
in the field.

We define that the interface normal is along the z direction.
The Tersoff potential50 is adopted for calculating interatomic
forces. As Si and Ge have different lattice constants, we posit that
Si remains unstressed. Ge maintains the same lattice constant as Si
in the xy direction and is extended in the z direction to release the
stress in the z direction. The lattice constant of Si is a ¼ 5:432 Å.
The lattice constants of Ge are a ¼ 5:432 Å and c ¼ 5:815 Å. The
phonon dispersion of bulk Si and strained bulk Ge are computed
using the Phonopy package.51

Three types of interfaces are constructed, as shown in Fig. 1.
The first is an atomically smooth interface, in which the Si lead
and the Ge lead are directly contacted. The second type is interdif-
fusion interfaces, obtained by first repeating the system by 2 � 2 in
the xy direction and randomly swapping 50% of the atoms within
1 nm near the interface. The third type is amorphous interfaces,
achieved by initially repeating the system by 2 � 2 in the xy direc-
tion and then using molecular dynamics to displace the atoms
within 1 nm near the interface while keeping the rest of the atoms
fixed. A Langevin thermostat at 3000 K, 1 fs time step, and 1 × 106

total steps are employed in the molecular dynamics. Subsequently,
the structure is quenched to the ground state. It should be noted
that in all three types, the final structure is optimized to ensure that
all atoms are at their equilibrium positions. Finally, the second-
order force constants are computed using a central difference
method. Once the interface structures have been constructed, the

system is partitioned into three regions along the z direction: the
left lead, the device, and the right lead. To ensure that any localized
effects resulting from the interface are adequately captured, the
device must be sufficiently thick. In our calculations, we set the
length of the device to 10 nm if no other value is specified. This
value is sufficient for all localized effects, which will be discussed in
Sec. III.

III. RESULTS AND DISCUSSION

We first present the calculation results of TBC. Table I sum-
marizes the TBC of three types of Si/Ge interfaces at 300 K, as well
as the TBC of the atomically smooth interface calculated using the
original LD method and from the literature. The TBC of an atomi-
cally smooth Si/Ge interface is 324 MW/m2 K, which is in good
agreement with the results of the original LD method,38 the AGF
method,49 and the NEMD simulation.11 Both interdiffusion inter-
faces and amorphous interfaces can cause a decrease in TBC, with
amorphous interfaces leading to a greater decrease. The original
LD failed to compute the TBC of rough interfaces, manifested as
yielding TBCs several orders of magnitude greater than expected.
Without the constraint of energy conservation, the sum of trans-
mittance and reflectance was not limited to 1. Figure 2 displays the
histogram of the sum of transmittance and reflectance for each
phonon mode on the sampling mesh. It can be observed that the
energy non-conservation issue is more pronounced in rough inter-
faces. Although most phonon modes roughly obey the rule of
energy conservation, numerous exceptions exist. In rough inter-
faces, some phonon modes exhibit transmittance several orders of
magnitude higher than 1, leading to the failure of TBC calculations.
This failure emphasizes the need for the constraint of energy con-
servation, which is fulfilled in our method.

The constraint of energy conservation is achieved by con-
strained PGD iteration in our method. The convergence of PGD
iteration and the ability to find the global minimum is evaluated by
examining the iteration process of all phonon modes. As an
example, Fig. 3 shows the residual of the PGD iteration process of
an ordinary phonon wave vector (0.03 Å−1, 0.07 Å−1, and 0.1 Å−1)
in the amorphous interface. The iteration achieves convergence
within 100 iterations. Using ten distinct random initial estimates,
we find that they all converge to the same global minimum and
exhibit similar convergence speeds. This result validates the stability
and efficiency of the PGD iteration.

We then examine the localized effects in the LD method. In
the derivation, we have assumed that the device is sufficiently thick
so that all localized effects remain within it. Here, we examine the

TABLE I. The TBC of three types of Si/Ge interfaces at 300 K using the original and robust lattice dynamics method, compared with results from the literature.

Method Atomically smooth interface (MW/m2 K) Interdiffusion interface Amorphous interface

Robust LD 324 288 MW/m2 K 136 MW/m2 K
Original LD 323 Failed Failed
Original LD38 320 None None
AGF49 280 None None
NEMD11 310 None None

FIG. 1. Schematic diagram of the three interface types. The top panel repre-
sents the atomically smooth interface. The middle panel represents the interdif-
fusion interface. The bottom panel represents the amorphous interface. The
latter two interfaces are constructed with a 2 � 2 supercell and 1 nm roughness.
The thickness of the device is set to 10 nm in all three models.
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localized component to verify the assumption. The localized com-
ponent is determined by subtracting the bulk phonon components
from the eigenvectors of atoms in the device, depending on their
relative position to the interface, that is,

ulocal ¼
ui � sI eiqI �ri þP

Rj

ARj sRj e
iqRj

�ri

 !
, i [ Si,

ui �
P
Tk

ATk sTk e
iqTk

�ri , i [ Ge:

8>>><
>>>:

(20)

As an example, Fig. 4(a) shows the localized component of a
traverse acoustic phonon with a frequency of 5 THz and a wave
vector of (0, 0, 1 nm−1) at the atomically smooth interface. The
transmittance of this phonon mode is zero, which means that it is
experiencing total reflection. The localized evanescent mode situated
on the Ge side is exposed, which exponentially decays to zero within
a distance of 4 nm. In contrast, the localized components of most
other phonon modes with nonzero transmittance are limited to
much shorter distances. Therefore, the device region with a thick-
ness of 10 nm is deemed sufficient. Furthermore, we have tested the
convergence of the TBC by extending the thickness of the device, as
depicted in Fig. 4(b), which confirms the same conclusion.

From an alternative perspective, the local density of states
(LDOS) captures the localized effects near the interface. To calculate
the LDOS from the LD method, we perform a uniform sampling on
Si and Ge phonon modes in their first Brillouin zones and regard
them as incident phonons. Then, we compute the resulting eigenvec-
tors of atoms in the device and sum up the squares of magnitudes of
these eigenvectors over all sampling points, multiplied by a factor of

FIG. 2. Histograms of the sum of transmittance and reflectance for each
phonon mode used in the calculation of TBC using the original LD method. (a)
The atomically smooth interface. (b) The interdiffusion interface. (c) The amor-
phous interface.

FIG. 3. The iterative convergence of the PGD method with ten random initial
guesses carried out at an ordinary phonon wave vector (0.03 Å−1, 0.07 Å−1,
and 0.1 Å−1) in a rough Si/Ge interface with an amorphous layer of 1 nm.
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the delta function. The LDOS of atom i in the device is

LDOSi(ω) ¼ P
q in Si BZ

juij2δ(ω� ωq) þ
P

q in Ge BZ
juij2δ(ω� ωq):

(21)

The LDOS of four distinct atoms located in the device with
varying distances from the interface is shown in Fig. 4(c). It can be
seen that the LDOS of atoms in the vicinity of the interface differs
from that of the bulk DOS. On the Si side, a peak in the LDOS
emerges around 10 THz, which is absent in the bulk DOS. This can
be attributed to the influence of the DOS peak of optical phonons in
Ge at the same frequency. While on the Ge side, peaks appear in the
LDOS above the cutoff frequency within the range of 12–15 THz.
These peaks are the results of the influence of phonons in Si. On the
other hand, the LDOS of atoms located far away from the interface
approximates the bulk DOS. Therefore, the localized effects are

confined to a narrow region near the interface. Our results are con-
sistent with the LDOS from molecular dynamics.22 From the evanes-
cent modes and LDOS, it can be observed that our approach
accurately captures the interface effects while employing a sufficiently
large device thickness. It is worth emphasizing that, compared to
LDOS calculations using molecular dynamics, our method provides
more comprehensive insights into the interface effects, as it reveals
the interface effects of each phonon mode individually.

The most notable advantage of the LD method over MD and
AGF methods lies in its ability to compute the mode-resolved
phonon transmittance. The AGF method is limited to calculating the
transmittance of phonons with discrete wave vectors,22 while the
wave packet method based on MD can only compute the transmit-
tance of phonons with vertically incident angles.52 Here, we present
the results of the LD approach taking the atomically smooth interface
as an example, Figs. 5(a) and 5(b) show the transmittance of Si and
Ge phonons along high-symmetry paths, respectively. Figure 5(c)

FIG. 4. (a) The localized component of a traverse acoustic phonon with a frequency of 5 THz and a wave vector of (0, 0, 1 nm−1) which incident on the atomically smooth
Si/Ge surface. (b) The calculated TBC at various lengths of the device. (c) The solid lines represent the LDOS of four distinct atoms located in the device with varying dis-
tances from the interface. The shaded regions in the top and bottom panels represent the DOS of bulk Si and Ge, respectively.
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shows the cumulative frequency-dependent TBC, which aligns with
the results from AGF53 and NEMD.54 The transmittance of Si and
Ge phonons exhibit striking dissimilarities. On one hand, the Si
phonons exhibit nearly isotropic transmittance. All optical phonon
modes of Si have zero transmittance because their frequencies exceed
the cutoff frequency of Ge. The majority of TBC is contributed by
the acoustic phonons, as seen in Fig. 5(c). On the other hand, the Ge
phonons exhibit anisotropic transmittance. The transmittance along
Γ–L is significantly lower than that along Γ–U and Γ–X. The reason
is that phonons along Γ–L have a larger incident angle. Since the
speed of sound is lower in Ge than Si, phonons with larger incident
angles are experiencing total reflection. The phonon transmittance
along high-symmetry paths provides an overall characterization of
the phonon transmission. The computed results align with theoreti-
cal predictions, particularly by accurately capturing the phenomenon
of total internal reflection at large incident angles.

Next, we compute the statistical characteristics of the phonon
transmittance on a uniformly sampled grid in the Brillouin zone,
thereby gaining a deeper understanding of the characteristics of
phonon transmittance. We define the average phonon transmittance
as a function of the frequency ω, the incident polar angle θ, and the
incident azimuth angle f. The angles of the incident phonons are
defined by their group velocities rather than their wave vectors. The
average transmittance of phonons is calculated through a weighted
average using the Landauer formula. For example,

�T (ω) ¼
P

q,ν �hωqνvqν,zT qν
@f
@T

δ
�
ωqν � ω

�
P

q,ν �hωqνvqν,z
@f
@T

δ
�
ωqν � ω

� ,

�T (ω, θ) ¼
P

q,ν �hωqνvqν,zT qν
@f
@T

δ
�
ωqν � ω, θqν � θ

�
P

q,ν �hωqνvqν,z
@f
@T

δ
�
ωqν � ω, θqν � θ

� ,

(22)

and �T (θ), �T (f), �T (ω, f), and �T (θ, f) are defined similarly. For
the convenience of visualization, we consider the simplest form of
one and two variables. According to the definition, the average
phonon transmittance can precisely reproduce the total TBC,

G ¼ 1
V

X
q,ν

�hωqνvqν,zT qν
@f
@T

¼ 1
V

X
q,ν

�hωqνvqν,z
�T @f

@T
: (23)

It is worth noting that other models for phonon transmittance, such
as the AMM12 and DMM,55 rely on assumptions, whereas our
model does not. Our approach follows a bottom-up method, sum-
marizing statistical regularities from mode-resolved phonon trans-
mittance in a more detailed manner to accurately calculate the TBC
from the outset. By analyzing the statistical characteristics of
phonon transmittance, a more in-depth understanding of the physi-
cal mechanisms governing phonon behavior at interfaces can be
attained.

All six dependency relations of �T are shown in Fig. 6. By
comparing the dependencies of the average phonon transmittance
on three individual variables, as shown in Figs. 6(a)–6(c), it can be
observed that the frequency has the most significant impact on the
transmittance, followed by the incident angle, and finally the azi-
muthal angle. As presented in Fig. 6(a), the average phonon trans-
mittance is relatively high and consistent in the low-frequency
region, and it sharply decreases with increasing frequency.
Figure 6(b) demonstrates that the transmittance decreases with the
increase of the polar angle. Figure 6(c) highlights the anisotropic
behavior of transmittance with respect to the azimuth angle, dem-
onstrating approximately mirrored symmetry in two perpendicular
directions, which arises from the symmetry in the [001] direction
of the diamond structure of Si and Ge. Despite such anisotropy, we
can ignore the slight influence of azimuth angles by averaging
when considering only the values of TBC. The dependence of
phonon transmittance on phonon frequency has already reached a

FIG. 5. (a) The transmittance of Si phonons along high-symmetry paths. (b) The transmittance of Ge phonons along high-symmetry paths. Although Ge is strained, we
still adopt the high-symmetry paths of the unstrained structure in order to compare with Si. (c) The cumulative frequency-dependent TBC.
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consensus.46,55 However, our work further demonstrates that in
highly isotropic materials such as Si and Ge, the transmittance of
incident phonons is generally independent of the azimuthal angle
but exhibits a significant dependence on the polar angle.

Figures 6(d)–6(f ) present the dependency of �T on two vari-
ables, which strengthens our previous conclusion. Figure 6(d)
reveals the influence of frequency and incident angle as coupled
factors on the average phonon transmittance. Figures 6(e) and 6(f )
provide further evidence of the negligible anisotropy in the azi-
muthal angle by showcasing the joint distribution of the phonon
transmittance with respect to frequency, incident angle, and azi-
muthal angle. Therefore, we can make the approximation that the
average transmittance relies only on ω and θ, that is,

�T (ω, θ, f) � �T (ω, θ): (24)

Further observation of Fig. 6(d) reveals that the transmittance
decreases as the polar angle increases, with a similar rate of

decrease across different frequencies. Therefore, it can be assumed
that the effects of frequency and polar angle on the transmittance
are decoupled, i.e.,

�T (ω, θ) � �T 0(ω)g(θ), (25)

in which �T 0(ω) ; �T (ω, 0) is the transmittance of phonons with
the zero incident angle. The factor of polar angle is defined as

g(θ) ¼
�T (θ)

�T (θ)jθ¼0

: (26)

Figure 7 compares the coupled expression �T (ω, θ) with the
decoupled expression �T 0(ω)g(θ) in the atomically smooth inter-
face, interdiffusion interface, and amorphous interface. The TBC
obtained from each expression is indicated in each subfigure. The
TBC values in Figs. 7(a)–7(c) align with those in Table I, indicating

FIG. 6. The average transmittance defined on one or two variables. (a) �T (ω), (b) �T (θ), (c) �T (f), (d) �T (ω, θ), (e) �T (ω, f), and (f ) �T (θ, f). Among them, �T (θ),
�T (f), and �T (θ, f) are averaged on phonons with frequencies lower than 4 THz.
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that the average phonon transmittance reproduces the precise TBC.
This validates the conclusion of Eq. (23). By comparing Figs. 7(a)
and 7(d), it can be observed that the phonon transmittance distri-
bution of the decoupled expression bears resemblance to that of
the coupled one, and similar TBC values are computed as well.
By further comparing Fig. 7(b) with Fig. 7(e) and Fig. 7(c) with
Fig. 7(f), the same conclusion can be drawn. Both the coupled
expression and the decouple one reproduce the TBC precisely,
while the decouple one has a much simpler form. Hence, the
decoupled expression is applicable to atomically smooth Si/Ge
interfaces, interdiffusion interfaces, and amorphous interfaces.

In summary, our model of phonon transmittance will advance
the understanding of the underlying mechanisms of TBC. On one
hand, while previous models primarily focused on the influence of
phonon frequencies on transmittance, our model takes into
account the impact of phonon incident angles, benefiting from the
calculation of mode-resolved phonon transmittance. On the other
hand, our model relies solely on the atomic structure of the

interface, without any assumptions or predefined parameters,
enabling a bottom-up computation approach. It is important to
emphasize that the specific expression of the phonon transmittance
depends on the types of materials on both sides of the interface
and the atomic structure of the interface itself. Therefore, it is
impossible to summarize all situations with a universal formula.
However, the characteristics of the phonon transmittance, such as
weak anisotropy in azimuth angle and decoupling with respect to
frequency and polar angle, will generally apply to interfaces com-
posed of simple materials.

IV. CONCLUSIONS

This paper presents a robust LD approach for computing
mode-resolved phonon transmittance at interfaces, addressing the
issue of the absence of energy conservation constraint in the origi-
nal LD approach. The constraint of energy conservation is achieved
using linear algebra transformations and projection gradient

FIG. 7. The coupled average transmittance [(a)–(c)] and the decoupled average transmittance [(d)–(f )] in the atomically smooth interface, the interdiffusion interface, and
the amorphous interface. The TBC for each configuration is presented in each subfigure.
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descent iterations. Our method shows agreement with the original
LD approach when applied to the atomically smooth Si/Ge inter-
face, while also displaying robustness when dealing with rough
Si/Ge interfaces. Our approach captures the localized effect at the
interfaces. The evanescent mode is exposed by examining the local-
ized component of atom motion. Using a bottom-up approach, the
statistical characteristics of transmittance based on mode-resolved
values are analyzed, taking frequency, polar angle, and azimuth
angle into consideration as influencing factors. Results show that
the anisotropy in the azimuth angle can be ignored, and the
dependency on the frequency and polar angle can be decoupled.
The decoupled expression accurately reproduces the TBC calculated
with mode-resolved transmittance. The method presented in this
paper facilitates the exploration of TBC mechanisms in rough inter-
faces and offers opportunities to investigate the relationship
between TBC and atomic structures.
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